

Sensor and biosensors in medical sciences

By:

Dr. Omid heydari shayesteh

Contents

Introduction

Historical background

Sensor and medical applications

Biosensors

Types of biosensors

Nanotechnology in (bio)sensors

Commercial biosensors

Challenges in (bio)sensing research

Introduction

Classical (traditional) customary analytical methods

1

HPLC

Comparision between classic analytical methods and (bio)sensors

Classical methods

Advantages

Possibility to measure several analytes

Commercial availability

Sensitive

Specific

Limitations

Time-concuming

Expensive

laborious and long sample preparation

Need to skilled user

High organic solvent consumption

(Bio)sensors

Advantages

Fast, real-time measurement

Easy, affrodable

Simple device

Sensitive and ultra-sensitive

Reusability

Low organic solvents consumption

Portable (on-site measurement)

Limitations

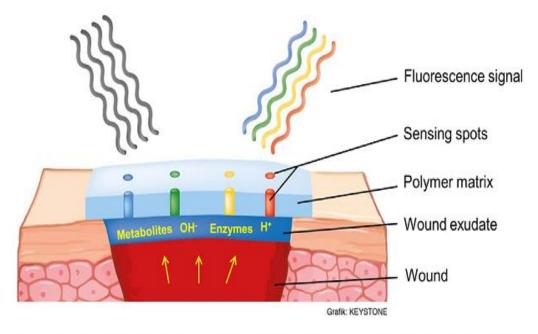
Commercial availability restrictions

Single Analyte detection

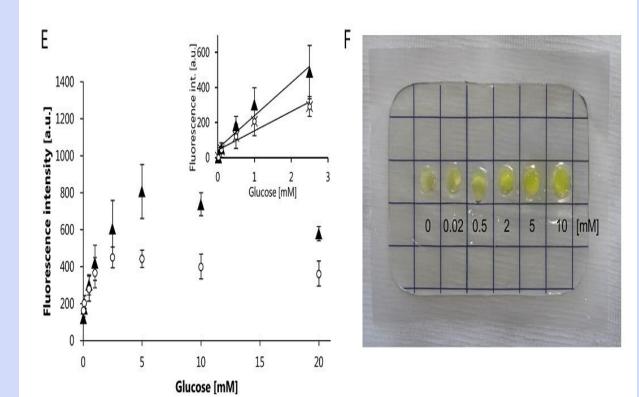
The history of biosensors dates back to as early as 1906 when M. Cremer demonstrated that the concentration of an acid in a liquid is proportional to the electric potential that arises between parts of the fluid located on opposite sides of a glass membrane.

Between 1909 and 1922, Griffin and Nelson first demonstrated immobilisation of the enzyme invertase on aluminium hydroxide and charcoal.

The first 'true' biosensor was developed by Leland C. Clark, Jr in 1956 for oxygen detection. He is known as the 'father of biosensors'


The demonstration of an amperometric enzyme electrode for the detection of glucose by Leland Clark in 1962 was followed by the discovery of the first potentiometric biosensor to detect urea in 1969 by Guilbault and Montalvo, Jr.

Eventually in 1975 the first commercial biosensor was developed by Yellow Spring Instruments (YSI)


Sensors

Sensors are devices that detect physical, chemical, and biological signals and provide a way for those signals to be measured and recorded.

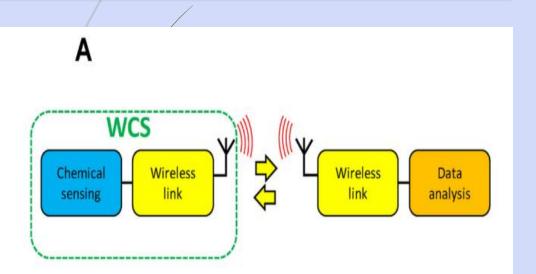
1. Simultaneous detection of pH value and glucose concentrations for wound monitoring applications.

Fig. 1. Scheme of the sensing principle for non-invasive wound monitoring based on the detection of pH-values and glucose concentrations.

2. Temperture and pH sensors based on graphenic materials

Biosensors and Bioelectronics 91 (2017) 870-877

P. Salvo et al.


7

3.5 mm 6 mm] 2 mm Temperature sensors WE RE mm 22 mm b) 5 mm a) c)

Fig. 1. a) A flexible PET screen printed board used for measuring pH. Boards with different lengths and number of sensors can be used according to wound dimensions. b) Detail of the pH sensor board. Each working electrode (WE, diameter 2 mm) is coated with a GO film. The reference electrode (RE, diameter 1 mm) is Ag/AgCl. c) A flexible PET screen printed board used for measuring temperature. The active area is 6 mm×3.5 mm and electrodes ($600 \mu m$ wide $-500 \mu m$ spaced) are connected to the readout electronics by silver tracks. The sensitive layer consists of reduced graphene oxide. Boards with different lengths can be used according to wound dimensions.

3. Wireless chemical sensors and biosensors

Wireless chemical sensors (WCSs) are hybrid devices that collect (bio)chemical data from their local environment and then process and transmit this chemical analytical information to a remote device, or devices, by <u>wireless technology</u>, most usually by radio communications,

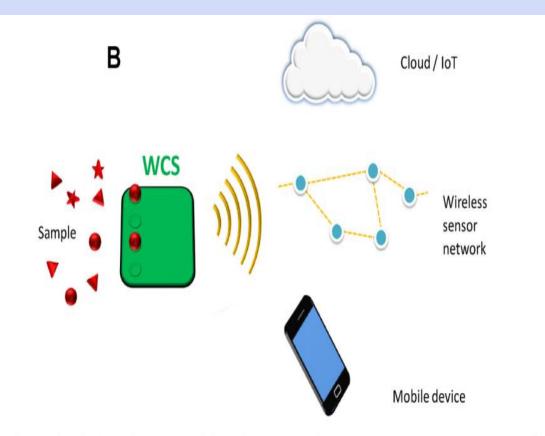
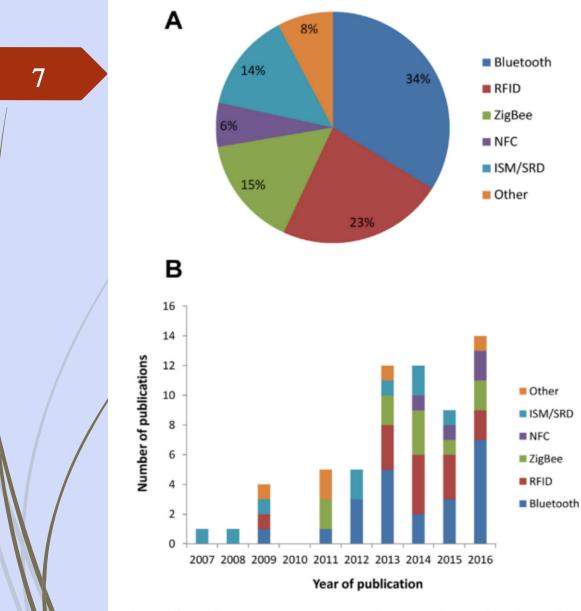
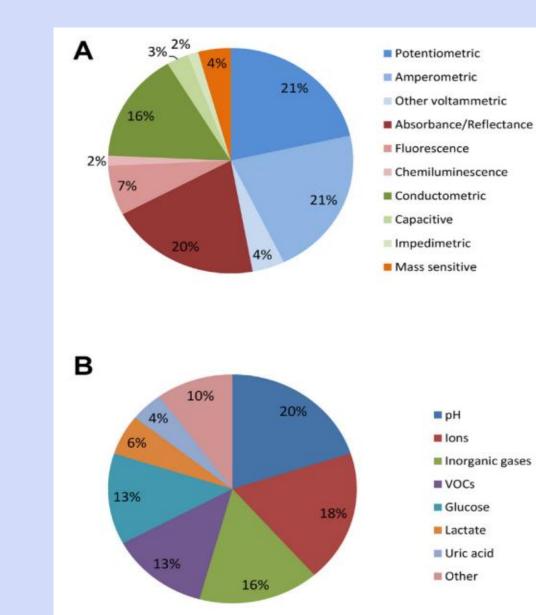




Fig. 1. (a) Generic schematic of a wireless chemical sensor system. The data analysis output can inform a user, or initiate an appropriate system response. (b) Examples of communications with WCSs include single point-to-point reading (e.g. to a personal mobile device), and distributed systems where the WCS forms part of a wider network. In either case, data can be aggregated to cloud-hosted databases, as necessary.

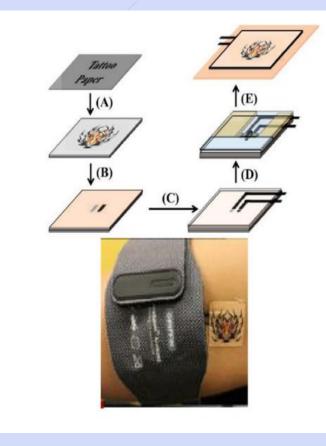


Fig. 2. (a) Wireless communication protocols deployed in wireless chemical sensors, and (b) incidence of the different protocols by year of journal publication, 2007–2016.

Fig. 3. (a) Transduction mechanisms deployed in wireless chemical sensors (blue – electrochemical, red – optical, green – electrical, orange – mass sensitive). (b) Distribution of WCS publications by target analyte. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4. A wearable sensor for determining sodium in sweat during exercise

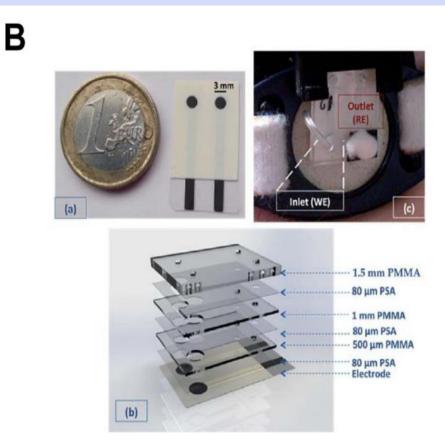
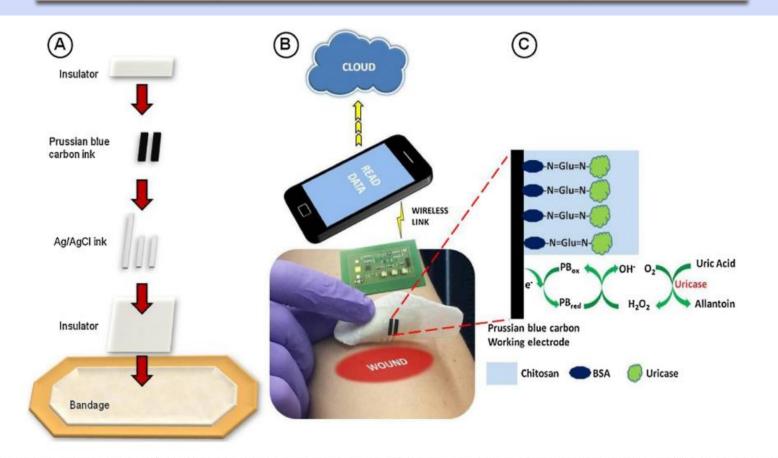
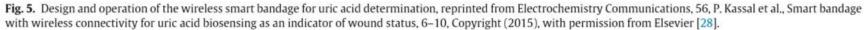




Fig. 4. Wearable wireless potentiometric sensors for determining sodium in sweat: (a) Fabrication and transfer process of the Bluetooth-based tattoo sensor, Reprinted from Biosensors & Bioelectronics, 54, A.J. Bandodkar et al., Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring, 603-9, Copyright (2014), with permission from Elsevier [58]; (b) ZigBee-based system incorporating microfluidic chip, adapted from Ref [59] with permission of The Royal Society of Chemistry (https://doi.org/10.1039/C5AY02254A).

5. Design and operation of the wireless smart bandage for uric acid

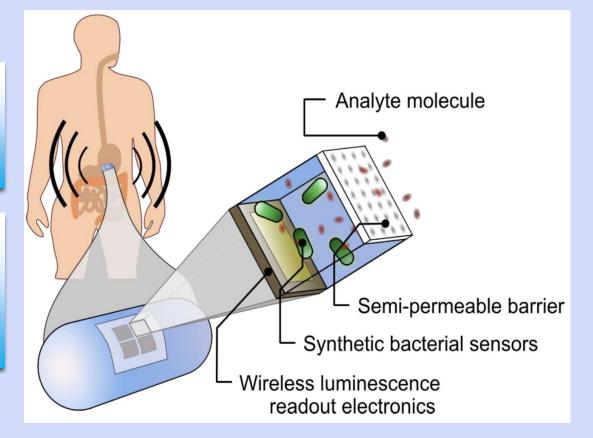
Immobilised urate oxidase, paired with a printed catalytic Prussian blue transducer, facilitates chronoamperometric detection of uric acid at a low working potential.

Table 3

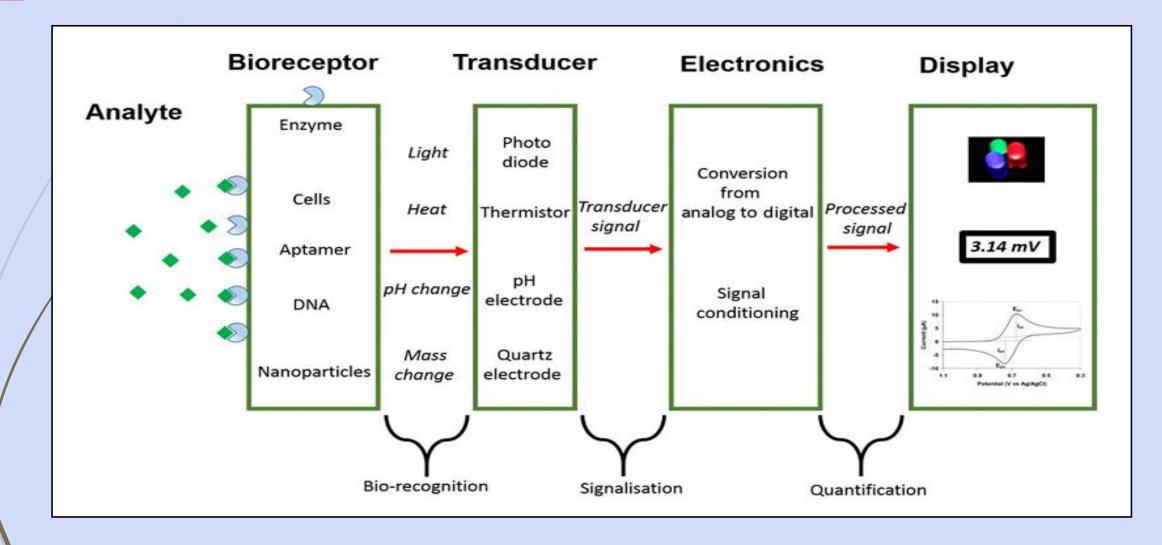
Wireless electrical chemical sensors.

Analyte	Recognition element	Transduction mechanism	Wireless system	Application	Ref.
CO, CO ₂ , SO _x , NO _x , O ₂	MOx	Conductometric	ZigBee	Environmental, pollution	Kumar et al. [80]
H ₂ , CH ₄	Fe ₂ O ₃	Conductometric	ZigBee	Security	Song et al. [81]
ethanol	PEDOT:PSS	Conductometric	RFID	General	Steinberg et al. [82]
methanol	CNT	Conductometric	Bluetooth	General	Jang et al. [83]
NO ₂	Oxygen plasma modified MWCNT	Conductometric	RFID	General	Clement et al. [29]
DNT	DNA-modified SWCNT	Conductometric	ZigBee	Security	Liu et al. [84]
pH	poly(1-amino anthracene) with SWCNT	Conductometric	RFID	General	Gou et al. [85]
sevoflurane	MWCNT-loaded Polypyrrole	Conductometric	ISM/SRD	General	Chavali et al. [86]
VOCs	MWCNT/polymer composites	Conductometric	ZigBee	Environmental Wearable	Lorwongtragool et al. [26
NH3 Humidity	Polyaniline/carbon nanocomposite	Conductometric Capacitive	RFID	Environmental	Quintero et al. [87]
VOCs (EtOH, EtOAc, humidity)	PDMS, PBMA, PHEMA	Capacitive	Zigbee	Environmental (industrial workplace)	Oikonomou et al. [88]
VOCs	ZnO-graphene modified eelctrodes	Impedimetric	Bluetooth	Sports (acetone), other	Liu et al. [89]

 Table 4


 Optical wireless chemical sensors.

Analyte	Recognition element	Transduction mechanism	Wireless system	Application	Ref.
pН	Bromocresol green	Reflectance	RFID	General	Steinberg et al. [92]
Model dye, K+	Valinomycin, N—Octadecanoyl-Nile blue	Absorbance	RFID	General	Steinberg et al. [93]
Acetic acid vapour	Bromophenol blue	Absorbance	ISM/SRD	Environmental, gas	Shepherd et al. [94]
NH ₃ vapour	3'-3"- dichlorophenolsulfonephthalei	Absorbance in	ZigBee	Environmental, Cultural Heritage conservation	Llorente-Alonso et al. [27]
NO ₂	diazo coupling reagents	Absorbance	ISM/SRD	Environmental, air quality	Maruo et al. [34]
Humidity	Direct absorbance	IR Absorbance	ZigBee	General	Cao et al. [95]
KMnO ₄ (model)	KMnO ₄ (model)	Absorbance	Bluetooth	General	Camarillo-Escobedo et al. [96]
pН	Bromocresol purple	Absorbance	Bluetooth	Environmental, water quality	Czugala et al. [97]
pН	Bromocresol purple	Reflectance	ISM/SRD	Sports, sweat monitoring	Morris et al. [98]
рН	Bromocresol purple	Absorbance	Bluetooth	Sports, sweat monitoring	Curto et al. [99]
pH	7-Hydroxyphenoxazone	Reflectance	Bluetooth	Sports, sweat monitoring	Caldara et al. [25]
pH	Bromophenol blue	Absorbance	Bluetooth	Wearable, wound monitoring	Schyrr et al. [100]
pH	GJM 534	Reflectance	RFID	Wearable, wound monitoring	Kassal et al. [101]
O ₂	Pt octaethylporphyrin	Fluorescence	RFID	Food quality	Martinez-Olmos et al. [30
CO ₂ , NH ₃ ,	α -naphtholphthalein,	Absorbance,	NFC	Food quality	Escobedo et al. [102]
humidity, O ₂	bromophenol blue, crystal violet, PdTFPP	Fluorescence			
Glucose	Bis-boronic acid fluorescent indicator	Fluorescence	NFC	Implantable, glucose monitoring	Mortellaro et al. [32]
Glucose	Fluorescent labelled analyte binding protein	Fluorescence	ISM/SRD	Implantable, glucose monitoring	Valdastri et al. [103]
Fluorescein (marker)	Direct fluorimetry	Fluorescence	Zigbee	Swallowable, Gastrointestinal bleeding	Nemiroski et al. [104]
Thyroid- stimulating hormone TSH	Antibody (sandwich immunoassay)	Chemiluminescence	RFID	Healthcare, POC diagnostics	Yazawa et al. [105]


Biosensor

A biosensor is an analytical device. The sensor which integrates the biological elements with the physiochemical transducer to produce an electronic signal is proportional to a single analyte.

The sensitive biological element (e.g. tissue, microorganisms, cell receptors, enzymes, aptamers, antibodies, nucleic acids, etd.) is a biologically derived material or biomimetic component that interacts (binds or recognizes) with the analyte under study.

Representation of a biosensor

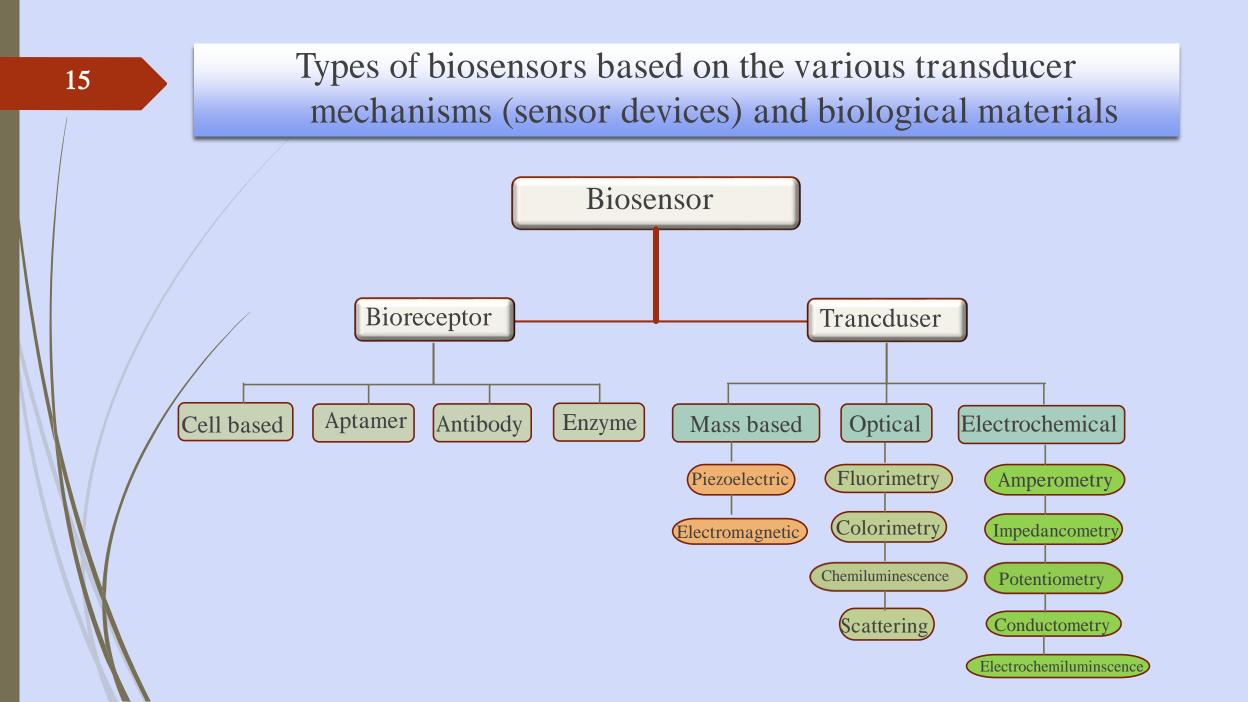
Characteristics of a biosensor

Selectivity

Selectivity is the ability of a bioreceptor to detect a specific analyte in a sample containing other admixtures and contaminants.

Classically, antibodies act as bioreceptors and are immobilised on the surface of the transducer. A solution (usually a buffer containing salts) containing the antigen is then exposed to the transducer where antibodies interact only with the antigens.

Reproducibility


Reproducibility is the ability of the biosensor to generate identical responses for a duplicated experimental set-up.


Stability

Stability is the degree of susceptibility to ambient disturbances in and around the biosensing system. These disturbances can cause a drift in the output signals of a biosensor under measurement.

Sensitivity

The minimum amount of analyte that can be detected by a biosensor defines its limit of detection (LOD) or sensitivity.

Major areas of applications for biosensors

Medical diagnosis (both clinical and labroatory use)

Study of biomolecules and their interaction

Point-of-care testing

Drug Development

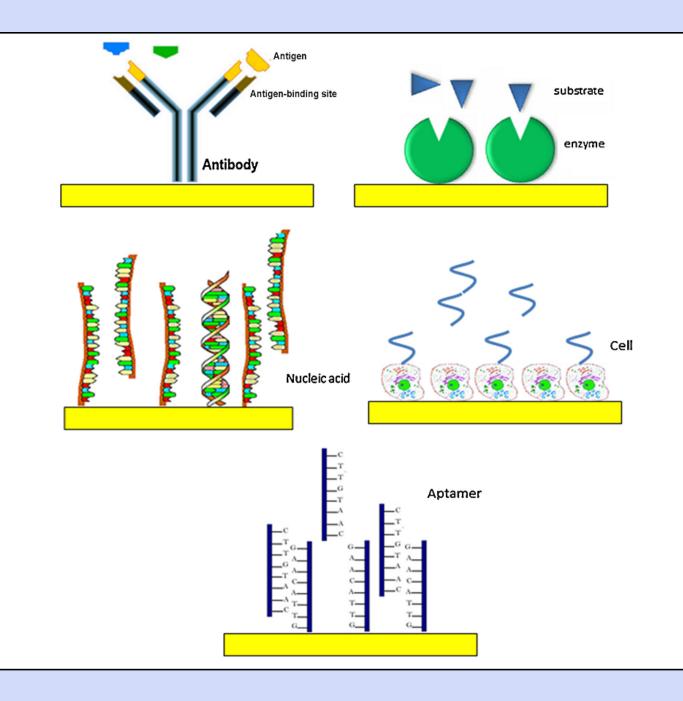
Crime detection

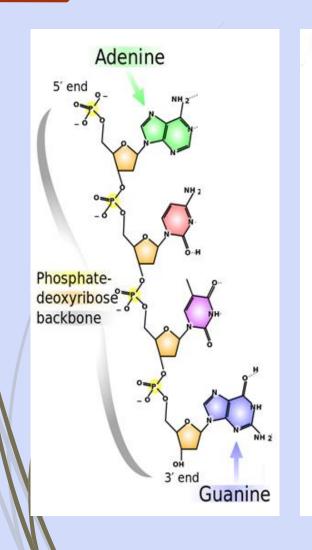
Agriculture and food industry

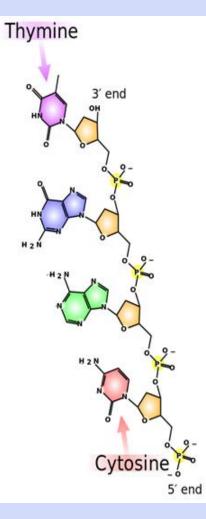
Environmental field monitoring

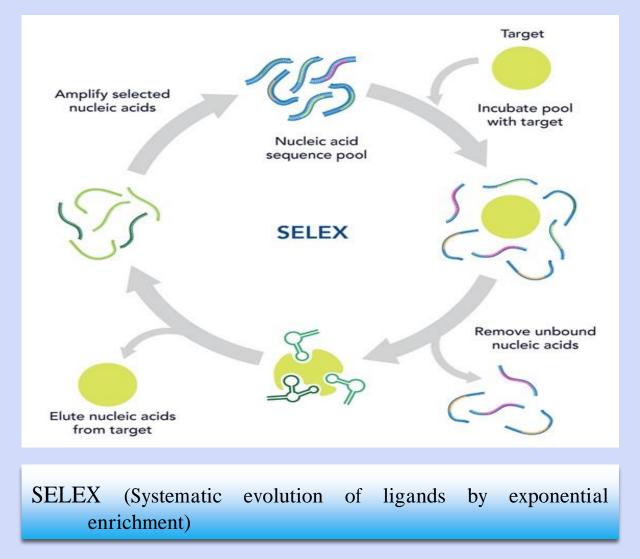
Quality control

Industrial Process Control


Detection systems for biological warfare agents


With POC1


Methods of biosensing with various biological signal mechanism:


- (a) Antibody/antigen
- (b) Enzyme catalyze
- (c) Nucleic acid
- (d) Cell-based
- (e) Aptamer

Aptamers

20

Features of an ideal diagnostic component (bioreceptor)

high sensitivity

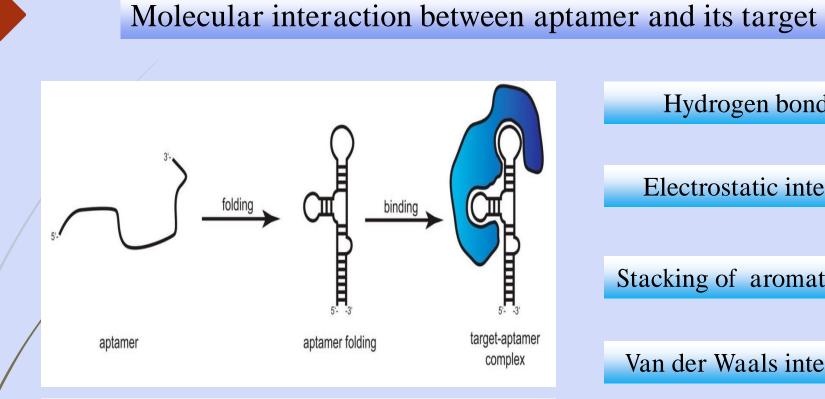
Acceptable selectivity

Quick response

The ability to respond to a wide range of analytes

Aptamar's superiority to antibody

Ability to detect non-immunogenic target analytes

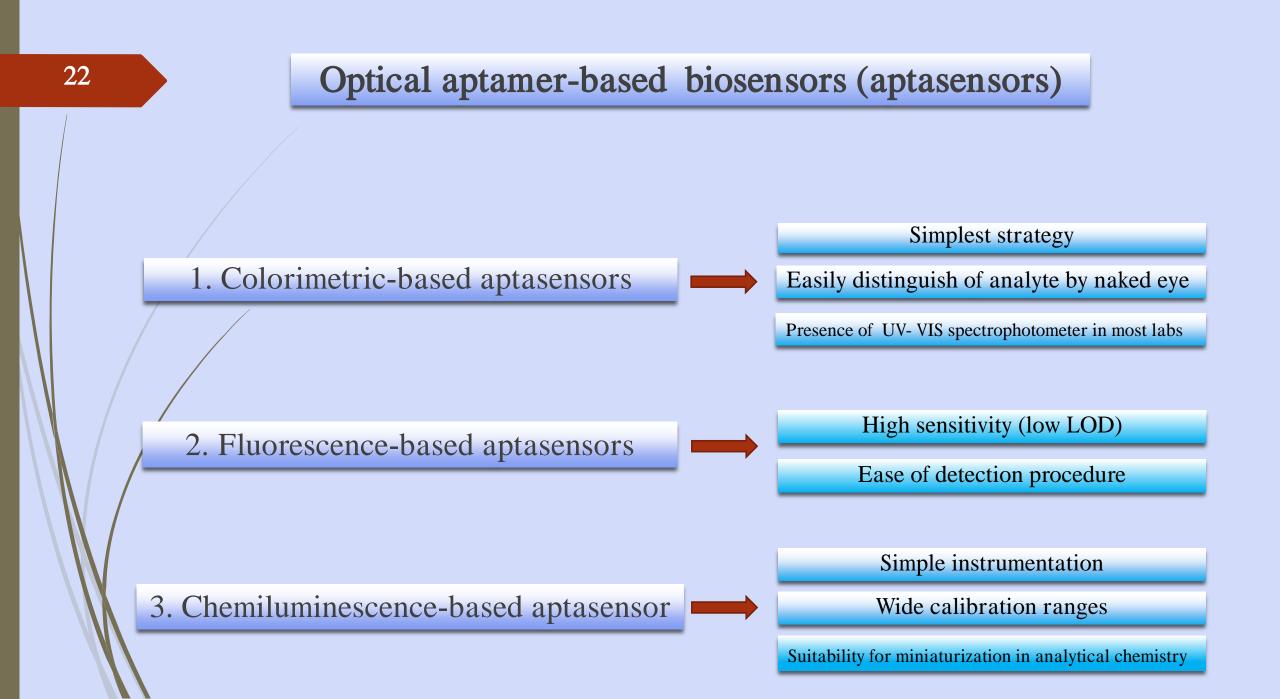

lower price

Chemical synthesis

Longer shelf life and storage capability for later use

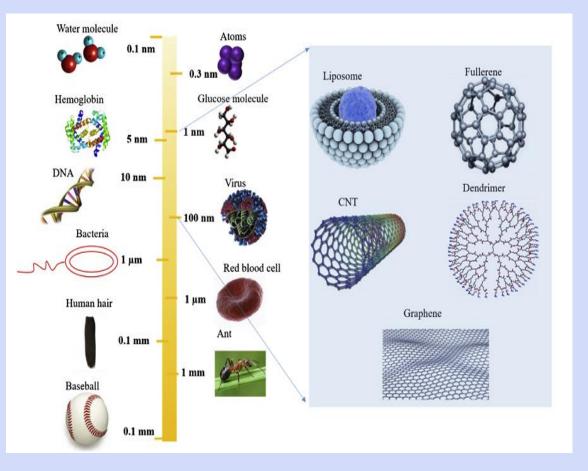
The ability to detect a wide range of molecules including small metal ions, small organic molecules, proteins, even cells and bacteria and ...

Suitable flexibility for attaching types of labels such as fluorophore, electrochemical detectors and nanoparticles

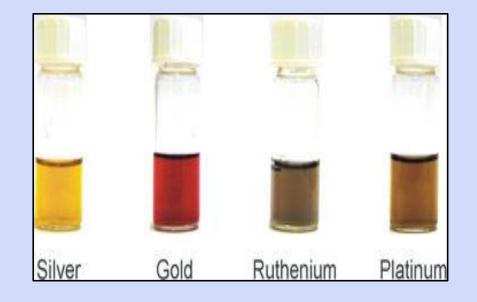

Mechanism of recognized a target analyte by Aptamar

Hydrogen bonding

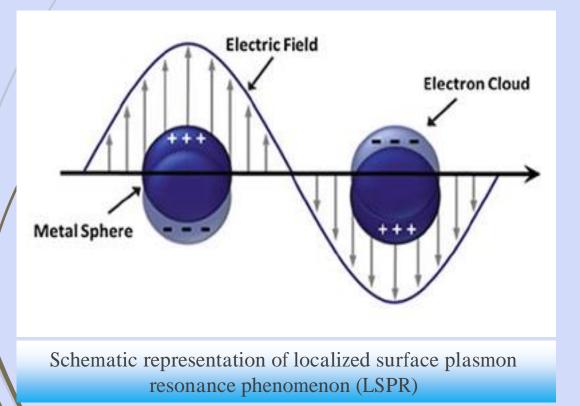
Electrostatic interactions

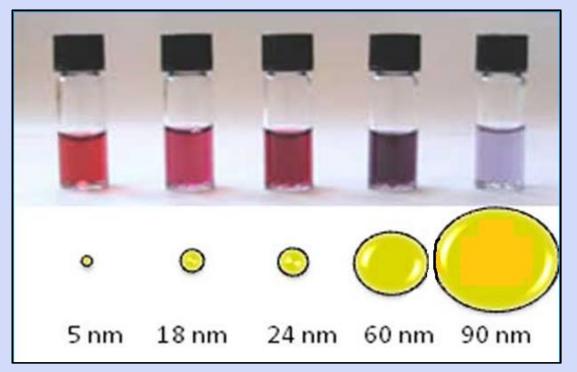

Stacking of aromatic rings

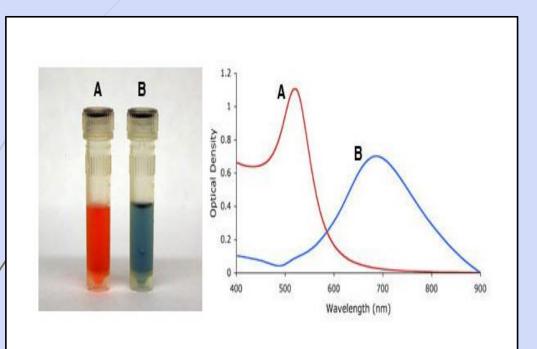
Van der Waals interaction

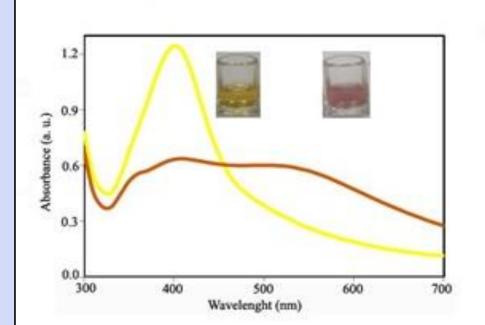

Nanotechnology

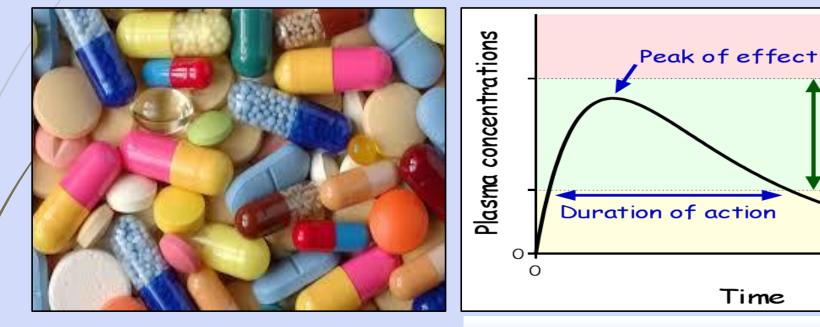
- 1. Reducing the size of the biosensor to the micro- or nanoscale can result in a better signal-to-noise ratio as well as the possibility of using smaller sample volumes, which means lower assay costs.
- 2. Increase sensivity, decrease response time, biocompatible for in-vivo bioassay
- 3. Ability to conjugate to variety of biological detection elements
- 4. The same particle size and optical properties associated with size and shape, high surface energy and high surface-to-volume ratio and adjustable surface properties
- 5. Reduced non-specific binding and increased binding efficiency towards the target molecule


Metallic nanoparticles


- 1. Easy to modified with simple chemistry
- 2. The high surface-to-volume ratio with special spectral and optical properties
- 3. Their high compatibility with biomolecules (specialy Au and Ag nanoparticles)
- 4. Their excellent optical performance(specialy Au and Ag nanoparticles)
- 5. Ability to control the process of making them
- 6. AuNPs catalytic activity


Biosensing using Metal Nanoparticles


The unique optical and electromagnetic properties of metal nanoparticles can be utilized in several areas including biosensing.


The plasmonic resonance created in metal nanoparticles is extremely sensitive for changes in their surroundings, making them suitable elements for sensing applications.

Narrow Therapeutic Index Drugs (NTIDs)

Drugs with a narrow TI (NTIDs) have a narrow window between their effective doses and those at which they produce adverse toxic effects.

Clinical Pharmacokinetic of (NTIDs)

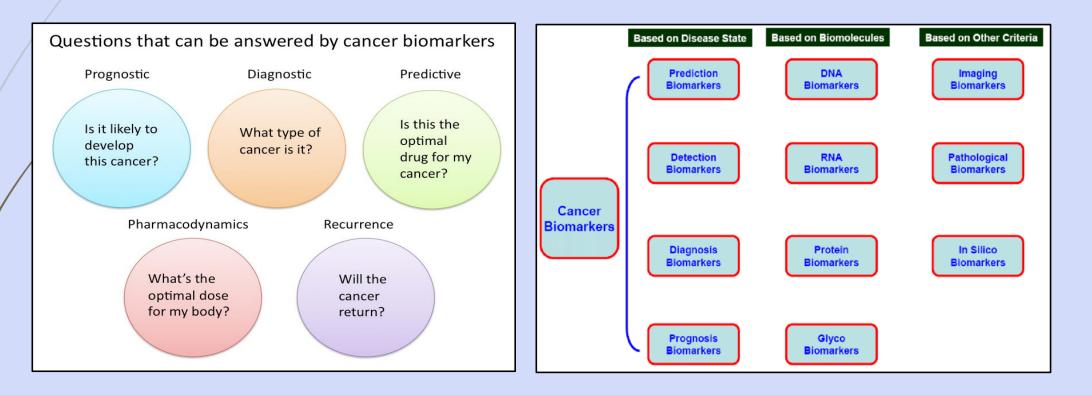
Side-effect

Adverse response

Therapeutic window

Desired response

Sub-therapeutic


The Importance of early detection of Cancer

Techniques used to detect cancer and their limitations

Technique	Limitations
Mammography	Detects only 70% of breast cancers Low sensitivity and specificity Sensitivity decreases as breast tissue den- sity increases Fails to detect tumor in dense and small tissue at early stage Frequent false positive results Low energy X- rays may cause mutations in tissue Disintegration of tumor tissue during ana- lysis may cause metastasis
Biopsy	May miss tumor cells Unnecessary surgery May lead to metastasis of tumor Need skilled expertize Performed for confirmation in later stages Expensive
MRI	Unable to detect all types of cancers such as ductal and lobular carcinoma Expensive
Sonography	Less sensitive and relatively expensive Need experienced expertize to analyse real time examination
FISH (Fluorescence in situ hybridization)	Provide semi-quantitative results Separate patients in biomarker positive or negative groups
ELISA	Time consuming Expensive Insensitive to low level markers Intrinsic color of analytes may lead to false results Require trained personal to carry out analysis
RIA	Radioactivity risk Complex procedure Time consuming Require trained personal to carry out analysis
IHC	Complicated technique Time consuming Require trained personal to carry out analysis

Cancer biomarkers

Cancer biomarkers (CB) are biomolecules produced either by the tumor cells or by other cells of the body in response to the tumor.

Commercial biosensors

Commercial biosensors in clinical analysis

Biosensors have many advantages such as low cost, high sensitivity, fast response, and easy operation for analyte detection.

Commercial glucose biosensors

glucose + $O_2 \rightarrow$ gluconolactone + H_2O_2

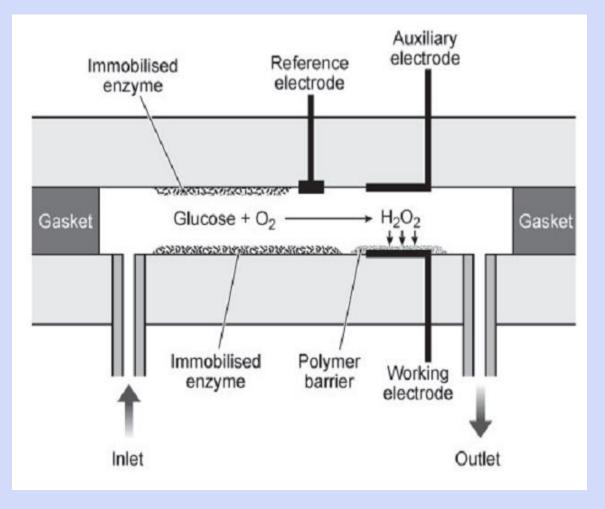


 Table 1

 Commercially available clinical biosensors and their characteristics [9–33].

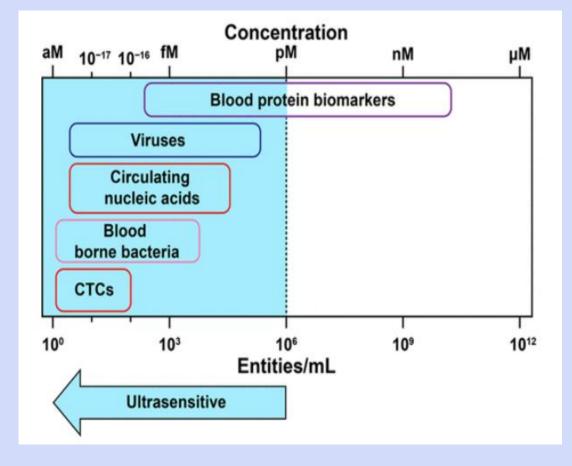
Company	Model	Analyte	Measuring range (mM)	Stability
Yellow Springs Instruments	23A 13L 27	Glucose Lactate Ethanol	1–45 0–15 0–60	300
Zentrum für Wissenschaftlichen Geratebau, Berlin, Germany	Glucometer	Glucose Uric acid	0.5-50 0.1-1.2	>1000 samples 10 days
Fuji Electric, Tokyo, Japan	Gluco 20	Glucose α-amylase	0-27	>500 samples
Pulsatum Health Care Ltd, India	Glucometer	Glucose	0-600 mg/dl	6 months
Abbott, USA	FreeStyle Life FreeStyle Freedom FreeStyle InsuLinx Precision Xtra Overview	Glucose Glucose Glucose, insulin Glucose, ketone	20–500 mg/dl 20–500 mg/dl 20–500 mg/dl, — —, —	_ _ _, _ _, _
EKF Industrie-Elektronik GmbH	Biosens 040	Glucose	-	_
Daiichi, Kyoto, Japan	Autostat GA-1120	Glucose	1-40	_
Roche, Basel, Switzerland	LA 640 Accu-chek Aviva Plus Accu-chek Nano Smart Accutrend Plus System	Lactate Glucose Glucose Glucose, cholesterol	0.5–12 – – 20–600 mg/dl, 150– 300 mg/dl	40 days ,
Eppendorf, Germany	ADM 300	Glucose	1-100	>2000 samples 10 days
	ECA 20 (ESAT 6660) ACC	Glucose, lactate Uric acid, lactate	0.6-60, 1-30 0.1-1.2, 1.2-18.7	14 days 10 days
Accusport lactate analyzer (ACC)	_	Total cholesterol, alcohol	—, 0.1%	
Lifestream cholesterol monitor Alcosan saliva alcohol dipstick	i-STAT PCA HHxx series	Glucose Urea nitrogen, Cl [–] , K [–] , Na ⁺ , hematocrit blood gases Water, urine, blood		

Table 1 (continued)

Company	Model	Analyte	Measuring range (mM)	Stability
Prodigy Diabetes Care, Charlotte, NC, USA	Prodigy AutoCode Prodigy Pocket Prodigy Voice	Glucose Glucose Glucose	20–600 mg/dl 20–600 mg/dl 20–600 mg/dl	- - -
Nova Diabetes, USA	Nova Max Plus Nova Max Link	Glucose, ketone Glucose		
Gediabetes, Taiwan	GE 100	Glucose	20-600 mg/dl	_
Aga Matrix, USA	Wavesense Presto	Glucose	50-400 mg/dl	_
EPS Bio Technology Corp, Taiwan	MDT2 EME EMM EMV2 MasterDriver R13 N	Glucose Glucose Glucose Glucose Glucose Glucose	20–630 mg/dl 20–630 mg/dl 20–630 mg/dl 20–630 mg/dl 20–630 mg/dl 20–630 mg/dl	
American Screening Corp., USA	Q. STEPS G/C ADMS	Glucose, cholesterol	100-400 mg/dl	_
Omnis Health, USA	Embrace Meter Embrace Evo Embrace Pro	Glucose Glucose Glucose	_ _ _	- - -
Simple Diagnostics, USA	Clever Choice Voice HD Clever Choice HD Clever Choice Mini Clever Choice Pro	Glucose Glucose Glucose Glucose	20–600 mg/dl 20–600 mg/dl 20–600 mg/dl 20–600 mg/dl	_ _ _
Medline, USA	EvenCore G3 EvenCore G2	Glucose Glucose	20–600 mg/dl 20–600 mg/dl	96 weeks 96 weeks
Bionime, Taiwan	GM 700 GM 720 GM 700S GM 260	Glucose	100–600 mg/dl 100–600 mg/dl 100–600 mg/dl 100–600 mg/dl	

Challenges in (bio)sensing research

Except lateral flow pregnancy tests and electrochemical glucose biosensors, very few biosensors have achieved global commercial success at the retail level.


1. Difficulties in translating academic research into commercially viable prototypes by industry.

2. Complex regulatory issues in clinical applications

3. It is difficult to engage researchers from different disciplines of science and engineering to work together.

4. Stability, costs and ease of manufacturing each component of the biosensor.

5. Increase of selectivity and sensivity, decrease of detection limit and time of analyze.

Thanks for attention